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The IR absorption spectrum of silica glass in the 3800 to 8000 cm−1 region is analyzed
based on the assumption of asymmetric band shapes. For simulating the asymmetric band
shapes, a generalized version of the convolution model for the complex dielectric constant
is proposed that involves different magnitudes of the standard deviation for an oscillator
distribution in the wavenumber regions below and above the distribution center. A
computational program for the dispersion analysis of the absorption spectra using such a
model is developed. Best fit to the IR spectrum of silica glass obtained with the asymmetric
band shapes contains no systematic errors throughout the contours of the 4400–4600 and
7000–7300 cm−1 absorption maxima, thus having appreciably better quality than fits
obtainable with the symmetric band shapes inherent in the usual convolution model. A
high accuracy of simulating the 7000–7300 cm−1 absorption maximum with the asymmetric
band shapes is attained when using as few as two bands in this region, which is in contrast
to available literature sources assuming four bands. The band frequencies and intensities
calculated with the asymmetric and symmetric band shapes are compared.
C© 2004 Kluwer Academic Publishers

1. Introduction
Silica glass is a widely used material, which is why the
modelling of various processes of heat treatment of this
glass is of importance for glass industry. For such mod-
elling, the knowledge of the heat transfer in the glass
is necessary. However, silica glass is manufactured by
a variety of processes, each process generating differ-
ent concentrations of water-related species in the glass.
These species greatly affect the radiation conductivity
that substantially determines the heat transfer in glasses
and is known [1] to have a maximum in the near- and
mid-IR. Therefore, the absorption of silica glass in the
3300 to 10000 cm−1 (3 to 1 µm) region was studied
extensively [2–5] (this absorption being mostly due to
the water-related species such as the bound hydroxyl
groups and interstitial water molecules). In these stud-
ies, special attention was paid to the deconvolution of a
complicated absorption spectrum of silica glass in this
region.

For deconvoluting the spectrum of a material into in-
dividual spectral components, or bands, either some
standard empirical methods or a dispersion analysis
method (see, for example, [6–8]) can be applied. Stan-
dard methods use the symmetric (typically, Gaussian)
contours for the components. Gaussian contours were

used when deconvoluting the IR absorption spectrum
of silica glass in the ranges of (i) the hydroxyl- and
H2O-related fundamentals, 3400–3720 cm−1 [2], and
(ii) multiphonon hydroxyl- and H2O-related vibrations,
3800–10000 cm−1 [3–5].

Stone and Walrafen [3] deconvoluted the asymmetric
maximum in the 4400 to 4600 cm−1 region into two in-
dividual Gaussian bands around 4450 and 4520 cm−1

and assigned these bands to two combination modes
involving the 1st or 4th component of the stretching
(Si)O H vibration1 and the symmetric or asymmet-
ric component of the stretching Si O Si vibration, re-
spectively. These combination modes are denoted fur-
ther by ν ′ (Si)O H + νs Si O Si and ν ′′′′ (Si)O H
+ νas Si O Si, respectively. Humbach et al. [5] con-
sidered the maximum in the 4400 to 4600 cm region to
be a single band and assigned it to a combination mode
involving some ν(Si)O H component and νs Si O Si
vibration.

1 In [3], the idea of the splitting of the stretching (Si)O H vibration into
as many as four components was borrowed from Walrafen and Samanta
[4] who assumed the occurrence of two kinds of so-called bidentate
units, each unit being formed by two (Si)O H groups.
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An asymmetric absorption maximum in the 7000 to
7300 cm−1 region was mostly considered in [3–5] to be
the envelope of three Gaussian bands assigned to the
overtones of three components of the (Si)O H stretch-
ing vibration (for the reason assumed to be responsi-
ble for the splitting of the vibration, see Footnote 1).
Stone and Walrafen [3] considered these overtones to
be 2ν ′′′ (Si)O H, 2ν ′′ (Si)O H, and 2ν ′ (Si)O H. As
to the fourth band around 7380 cm−1 that forms a weak
shoulder at the high-wavenumber wing of the 7000–
7300 cm−1 envelope, Stone and Walrafen assigned this
band to the combination mode such as 2ν ′′′ (Si)O H +
δ Si O Si (δ indicating the bending mode). Yokomashi
et al. [4] assigned the 7380 cm−1 band to the overtone
of the 1st component of the (Si)O H stretching mode,
2ν ′ (Si)O H.

The band shapes in the absorption spectra of glasses
are by no means Gaussian [8–11]; therefore, the results
of Gaussian deconvolutions of these spectra and, hence,
the assignments for spectral components thus resolved
are dubious. A more reliable solution of the problem of
glass spectrum deconvolution can be obtained with a
dispersion analysis method that is based on a particular
analytical model for the complex dielectric constant of
a material. Various versions of the dispersion analysis
differing in the kind of the model used were developed
for crystals [6, 7] and glasses [8–12]. Unlike standard
deconvolution methods, dispersion analysis provides
data on not only the spectral components but also (i) the
optical constants of a material and (ii) physically mean-
ingful optical microcharacteristics (such as the inherent
frequencies of oscillators, oscillator strengths, phonon
lifetimes, and also, for glasses, the widths of the oscil-
lator distributions over frequency) denoted further by
the collective term “band parameters”.

The dispersion analysis of glass spectra uses the con-
volution model for the complex dielectric constant (or
dielectric function) ε̂(ω) as follows (see, for example,
[8–12]):

ε̂(ω) = ε∞ +
J∑

j=1

Sj√
2πσj

×
∫ +∞

−∞

exp
[−(x − ωj)2

/
2σ 2

j

]
x2 − ω2 − iγjω

dx (1)

Here x is the variable oscillator frequency, ωj is the
central frequency for the j-th oscillator distribution,
and σj is the standard deviation for this distribution.
The rest are parameters retaining the same meaning as
in the classical model [6] widely used for the dispersion
analysis of the IR spectra of crystals. Best fits to glass
spectra obtainable with the dispersion analysis based on
Equation 1 were shown [8–10] to be characterized by
deviations from experiment less than the measurement
error. The random errors in the band frequencies and
intensities obtainable with the dispersion analysis of the
absorption spectra were estimated [9] to be, for weak
and/or greatly overlapped bands, around 0.5–0.6% and
10–12%, respectively.

When using the band shapes given by Equation 1,
there is no need to assume as many as three hydroxyl-

and water-related components (as was made in [2]) in
the narrow 3600–3700 cm−1 region of the absorption
spectrum of silica glass: two components are enough
for satisfactorily simulating this region [11].

As seen, model (1) denoted further by the usual con-
volution model retains the symmetric peak contours
for the imaginary part, ε′′(ω), of the complex dielec-
tric constant that are inherited from the classical model
[6]. Nearly symmetric ε′′(ω) peak contours are charac-
teristic also of another model used for the dispersion
analysis of the IR spectra of crystals that is known as
the factorized model [7]. A negligible asymmetry of
the ε′′(ω) peak shape presupposed by the latter model
is due to the variable damping coefficient alone. At the
same time, a thorough theoretical consideration [13]
indicates the IR band shapes in the spectra of disor-
dered polymers to be substantially asymmetric. For
the so-called boson peak in the low-frequency Raman
and IR spectra of glasses, the asymmetric contour was
shown to occur [14, 15] as well. So, the simulation
of the spectra of glasses and other disordered mate-
rials with any model that presupposes the symmetric
ε′′(ω) peak shapes seems to be a somewhat simplified
approach. When aiming to a mere phenomenological
simulation of the experimental absorption spectrum for
a glass, the asymmetric band shapes can be easily ap-
proximated with some appropriate asymmetric function
such as the step function, lognormal distribution func-
tion (as was the case for [14, 15]), and so on. However,
the phenomenological simulation cannot provide data
on the optical constants and band parameters, which is
why the dispersion analysis of the spectrum is required
for calculating these data. For implementing the dis-
persion analysis of glass spectra in terms of the band
shape asymmetry, one needs an analytical model for
ε̂(ω) that would allow for the asymmetric ε (ω) peak
contours, whereas the usual convolution model (1) re-
tains, as mentioned above, the symmetric ε′′(ω) peak
contours. So, a search for the ε̂(ω) model applicable
to spectra with an arbitrary degree of the ε′′(ω) peak
asymmetry is of importance for further development
of methods for spectral data treatment appropriate for
glasses and other materials with disordered structures.

In view of visual asymmetry, the absorption maxima
in the silica glass spectrum located in the 4400–4600
and 7000–7300 cm−1 regions are appropriate examples
for testing the applicability of models with the asym-
metric ε′′(ω) peak contours to be developed. In the given
research, we (i) proposed a reasonably simple analytical
representation for the asymmetric band shapes based on
a certain generalization of the usual convolution model,
(ii) developed the corresponding computational proce-
dure of the dispersion analysis, and (iii) tested this pro-
cedure with respect to the IR absorption maxima around
4500 and 7200 cm−1 in the silica glass spectrum.

2. Experimental and computational
The sample investigated was prepared from a synthetic
silica glass of type III,2 6.35 cm thick. The IR absorption

2 In accord with notations proposed in [16], type III silica glass usu-
ally contains approx. 1000 ppm H2O (the glass being obtained by the
hydrolysis of SiCl4 in the H2 + O2 flame).
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spectrum of the sample in the 3800 to 8000 cm−1

was recorded with a FTIR spectrophotometer (Bruker
IFS66) using the resolution of 4 cm−1 and 256 scans.
The signal/noise ratio at 7200 cm−1 was 250.

Notably, the use of some arbitrarily chosen ε̂(ω)
model allowing for the ε′′(ω) peak asymmetry would
require an algorithm for the numerical integration that
is entirely different compared to that used in the com-
putational procedure of the dispersion analysis [8–10]
involving Equation 1. The development of such a new
algorithm can turn out to be a complicated task. For
avoiding the necessity of developing the new algo-
rithm for the numerical integration, a relatively sim-
ple (though somewhat formal) way that allowed for
processing quantitatively the IR spectra containing the
asymmetric bands was chosen as follows. The convolu-
tion integral in Equation 1 was replaced by two halves
of such integrals differing in the magnitudes of the in-
tensities, Sj1 and Sj2, and standard deviations, σj1 and
σj2:

ε̂(ω) = ε∞ + 1√
2π

J∑
j=1

×
(

Sj1

2σj1

∫ +∞

−∞

exp
[−(x − ω j )2

/
2σ 2

j1

]
x2 − ω2 − iγjω

dx

+ Sj2

2σj2

∫ +∞

−∞

exp
[−(x − ωj)2

/
2σ 2

j2

]
x2 − ω2 − iγjω

dx

)

(2)

Here Sj and σj with subscript indices 1 and 2 corre-
spond to the ω ≤ ωj and ω ≥ ωj frequency ranges,
respectively. In a general case, Sj1 �= Sj2 and σj1 �= σj2.
For the symmetric bands (if any), these inequalities are
replaced by equalities Sj1 = Sj2 and σj1 = σj2, which
reduces the corresponding members of the generalized
Equation 2 to those of the initial Equation 1. In terms of
Equation 2, the Sj1/Sj2 and σj1/σj2 ratios are measures
for the absorption band asymmetry and the asymmetry
of the oscillator distribution,3 respectively. So, Equa-
tion 2 is a certain generalization of the convolution
model (1) over the case of an arbitrary band asymmetry.

Based on Equation 2, a computational program for
the dispersion analysis of the IR absorption spectra of
glasses with the asymmetric band shapes was devel-
oped. When applying this program to the IR absorption
spectrum of silica, the occurrence of the Sj1 �= Sj2 and
σj1 �= σj2 inequalities was allowed for bands consisting
the 4400 to 4600 and 7000 to 7450 cm−1 envelopes
whose asymmetry was seen visually. For the 3800–
4400, 4550–7000, and 7450–8000 cm−1 regions, the
symmetric band shapes were shown to allow for simu-
lating the experimental absorption spectrum quite sat-
isfactorily, which is why the conditions Sj1 = Sj2 and
σj1 = σj2 were imposed for these regions. For represent-
ing the total effect of strong fundamental IR oscillators

3 The Sj1/Sj2 and σj1/σj2 ratios do not coincide with each other because
the absorption band shapes are determined by not only the standard
deviations but also the damping coefficients.

of silica glass matrix on the real part of the complex di-
electric constant in the range under consideration, ε∞
was assumed, as in [17], to be frequency-dependent,
this ε∞ being approximated by the Sellmeier-like func-
tion borrowed from [18].

In the dispersion analysis, the quality of a fit is known
[8] to be estimated in terms of some error function, Q.
The error function used in the given research was as
follows:

Q
({pm}M

1

)
=

√
1

ω1 − ω2

∫ ω2

ω1

[
αmod

(
ω, {pm}M

1

) − αexp(ω)
]2

dω.

(3)

Here {pm}M
1 is the multitude of the oscillator param-

eters, αmod(ω, {pm}M
1 ) and αexp(ω) are the model ab-

sorptivity computed with these parameters and experi-
mental absorptivity, respectively, and ω1 and ω2 are the
wavenumber limits of a range under simulation.

With Q thus chosen, the highest attainable quality
of best fit to a spectrum is reached when a condition
is obeyed that is determined by inequality as follows:
Q(ω, {pm}M

1 ) < 	αexp(ω), where 	αexp(ω) is the ran-
dom error of experimental absorptivity.

3. Results
Fig. 1 shows the experimental spectrum of our silica
glass sample in the 3850 to 7650 cm−1 range. When
simulating this spectrum, the contributions of (i) the
high-frequency IR fundamentals of silica matrix [8] and
(ii) the hydroxyl- and water-related bands known [11]
to occur at wavenumbers less than 3650 cm−1 to the
absorption in this region were approximated by a sin-
gle effective oscillator with inherent frequency close to
that of the highest IR fundamental of SiO2 network. For
representing bands at wavenumbers greater than 3650
cm−1, particular oscillators were used, initial magni-
tudes of their parameters being mostly borrowed from
[11].

For bands simulating the 4400–4600 and 7000–7450
cm−1 regions (Table I) in which visually asymmetric
absorption maxima occur, the asymmetric band con-
tours given by Equation 2 were used (these bands be-
ing represented by the 7th, 8th, 14th, 15th, and 16th
oscillators). As in [11], the 4400–4600 cm−1 envelope
whose complicated structure is seen clearly was simu-
lated with two bands. Though the shape of the 7000–
7300 cm−1 envelope is smooth, it was found impossi-
ble to reproduce this envelope with a single asymmetric
contour. Therefore, for simulating the 7000–7300 cm−1

envelope, two bands (as in [11]) were used and the ex-
pedience of using the asymmetric contours for these
bands was analyzed.

For bands that form the structureless 3800–4400,
4550–7000, and 7450–8000 cm−1 regions, the sym-
metric contours given by Equation 1 were found to be
appropriate. In addition to oscillators from [11], it was
found necessary to incorporate oscillators around 6900
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T ABL E I Inherent oscillator frequencies, ωj, and oscillator strengths, 	ε0j = (Sj1/ω
2
j + Sj2/ω

2
j )/2, found with the dispersion analysis based on

Equation 2 to contribute to the absorption spectrum of silica glass sample in the 3800–8000 cm−1 range

Oscillator no. ωj (cm−1) 	ε0j Notes Oscillator no. ωj (cm−1) 	ε0j Notes

1 1180.4 7.93 × 10−6 Effective 10 4863.8 7.47 × 10−9

oscillator
2 3678.9 4.95 × 10−5 11 5275.3 7.49 × 10−9

3 3812.0 3.87 × 10−7 12 5807.2 6.25 × 10−9

4 3882.8 5.67 × 10−7 13 6931.5 1.40 × 10−8

5 3964.0 2.37 × 10−7 14 7105.9 1.37 × 10−8

6 4076.1 1.54 × 10−7 15 7229.3 6.02 × 10−8

7 4450.9 5.94 × 10−7 16 7384.0 5.08 × 10−9

8 4527.3 2.55 × 10−7 17 7533.2 9.94 × 10−10

9 4630.0 1.95 × 10−9 18 82324.0 2.17 × 10−3 Effective
oscillator

Figure 1 Overview of the IR absorption spectrum of silica glass sample in the range of the second order water-related vibrations and best fit to the
spectrum obtained with the asymmetric contours given by Equation 2 for bands located in the 4400 to 4550 and 7000 to 7450 cm−1 regions (for the
rest bands, the symmetric band contours being used). (1) is experiment and (2) is best fit.

and 7500 cm−1 and also, for approximating the contri-
butions of the fundamental electronic excitations to the
absorption in this region, another effective oscillator in
the VUV. Thus, the overall number of oscillators used
for simulating the spectrum under study was taken to
be 18.

Table I presents the magnitudes of the band fre-
quencies and intensities thus fitted, the intensities
being expressed in terms of the oscillator strengths
	ε0j = Sj/ω

2
j (these quantities being the contributions

of the oscillators to the static dielectric constant 	ε0).
For the asymmetric band shapes given by Equation
2, the total 	ε0j values were calculated, as averages,
by 	ε0j = (Sj1/ω

2
j + Sj2/ω

2
j )/2. For comparison, the

spectrum under study was fitted also with the sym-
metric contours given by Equation 1 for all oscilla-
tors used. Table II compares, for the 4400–4550 and
7000–7450 cm−1 regions, the band frequencies, oscil-
lator strengths, and standard deviations computed with
the asymmetric and symmetric band contours.

Best fit to the spectrum of our silica glass sam-
ple obtained with the asymmetric band contours for

simulating the 4400 to 4550 and 7000 to 7450 cm−1

regions is shown in Fig. 1. Fig. 2 compares, on an en-
larged scale, best fits in the 4250 to 4640 cm−1 region
obtained with the asymmetric and symmetric band con-
tours given by Equations 1 and 2, respectively. Fig. 3
shows, on an enlarged scale, best fit in the 7000 to 7450
cm−1 region obtained with the asymmetric band con-
tours given by Equation 2. Fig. 4 compares best fits
at wavenumbers greater than 6500 cm−1 obtained with
the asymmetric and symmetric band contours given by
Equations 1 and 2, respectively. Fig. 5 compares in-
dividual band shapes deconvoluted, from the 7000 to
7450 cm−1 region, with Equations 1 and 2.

4. Discussion
The inherent band frequencies computed with
Equations 1 and 2 differ negligibly (Table II). The os-
cillator strengths vary more perceptibly, which is due to
not only the greater computational errors but also differ-
ences in the spread of the total band intensity for an en-
velope over particular bands in the envelope depending
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T ABL E I I Comparison of the inherent frequencies and oscillator strengths for bands in the 4400–4600 and 7000–7300 cm−1 regions computed
with the asymmetric and symmetric band shapes

Data computed with

Asymmetric band shapes given by Symmetric band shapes given by
Equation 2, Qa = 1.26 × 10−3 Equation 1, Qa = 2.70 × 10−3

	ε0j = (Sj1/ω
2
j + Sj2/ω

2
j )/2 	ε0j

Band
frequency
range (cm−1)

ωj

(cm−1)
For the
bands

Total for
the range

Sj1
Sj2

σj1
σj2

ω j

(cm−1)
For the
bands

Total for
the range

4400–4600 4450.9 5.94 × 10−7 8.49 × 10−7 1.1 4.1 4450.3 6.27 × 10−7 8.56 × 10−7

4527.3 2.55 × 10−7 1.4 2.1 4523.1 2.29 × 10−7

7000–7300 7105.9 1.37 × 10−8 7.39 × 10−8 2.4 2.8 7086.7 1.38 × 10−8 7.28 × 10−8

− − – – 7165.9 1.97 × 10−8

7229.3 6.02 × 10−8 1.7 1.9 7231.3 3.93 × 10−8

7300–7600 7384.0 5.08 × 10−9 6.07 × 10−9 1.3 1.3 7395.2 4.39 × 10−9 6.19 × 10−9

7533.2 9.94 × 10−10 1.0 1.0 7578.2 1.80 × 10−9

aThe error function Q value given by Equation 3 is determined over the entire 3800–8000 cm−1 range.

Figure 2 Best fits to the spectrum of silica glass sample in the 4250 to 4640 cm−1 region obtained with different contours for bands around 4450
and 4525 cm−1. (A) Asymmetric band contours given by Equation 2. (1) is experiment and (2) is best fit. (B) Symmetric band contours given by
Equation 1. (1) is experiment and (2) is best fit.
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Figure 3 Best fit to the spectrum of silica glass sample in the 7000 to 7450 cm−1 region obtained with the asymmetric band contours given by
Equation 2. For simulating the 7000 to 7300 cm−1 envelope, two bands at 7106 and 7229 cm−1 are used. (1) is experiment and (2) is best fit.

on whether the asymmetric or symmetric band contours
are used. As seen from Table II, the total oscillator
strength computed with Equation 2 for the 4400–4600
and 7000–7300 cm−1 envelopes (and also for the 7300–
7600 cm−1 region lying outside the latter envelope) are
in a good agreement with those calculated when sim-
ulating the envelopes with the symmetric band shapes
given by Equation 1. This confirms that the band pa-
rameters found with the generalized convolution model
given by Equation 2 retain a clear physical meaning.

Fig. 1 shows a quite high quality of best fit to the
experimental spectrum of vitreous silica in the entire
3800–8000 cm−1 range obtained with the asymmetric
band shapes given by Equation 2. As seen from Figs
2A, 3, and 4A, the use of the asymmetric band shapes
given by Equation 2 for simulating the 4400–4600 and
7000–7450 cm−1 regions provides best fit that practi-
cally lacks systematic deviations from the experimen-
tal spectrum. On the contrary, the use of the symmetric
band contours given by Equation 1 results in rather
small but clearly seen systematic deviations (Figs 2B
and 4). When the number of the symmetric bands un-
der the 7000–7300 cm−1 envelope is taken to be two
(i.e., the same as that of the asymmetric bands), appre-
ciable differences between fit and experiment occur in
the 6550 to 7000 cm−1 region (Fig. 4B). An increase
in the number of the symmetric bands under the 7000–
7300 cm−1 envelope up to three (as was the case for
[3–5]) improves the fit (Fig. 4B) but does not elimi-
nate the systematic errors of the fit around the maxi-
mum of the envelope (Fig. 4A). As seen from Table
II, the magnitude of the error function (3) for best fit
with the asymmetric band shapes given by Equation
2 is two times less than that for the fit obtained with
the greater number of the symmetric band shapes given
by Equation 1. Hence it follows that the errors in the
band frequencies and intensities for weak and/or greatly

overlapped bands obtainable with the dispersion anal-
ysis of the absorption spectra based on model given by
Equation 2 should be appreciably less than those es-
timated in [9] (0.5–0.6% and 10–12%, respectively).
For estimating these diminished error magnitudes, fur-
ther research is necessary. In view of uncertainty in the
actual error magnitudes, the band parameter values in
Tables I and II are presented with the numbers of deci-
mal figures greater than those matching the above errors
from [9].

Thus, the use of the asymmetric band shapes given
by Equation 2 for the 4400–4600 and 7000–7300 cm−1

regions allows for (i) attaining the appreciably better
quality of best fit to the spectrum compared to that ob-
tainable with the symmetric band shapes given by the
usual convolution model (1) and (ii) reliably deconvo-
luting the silica glass spectrum with the smaller number
of spectral components than is the case for the symmet-
ric band shapes. All the above indicates that (i) a certain
asymmetry of the hydroxyl-related bands in the 4400–
4600 and 7000–7300 cm−1 regions of the silica glass
spectrum does occur and (ii) the generalized convolu-
tion model (2) is the more accurate tool for simulating
the hydroxyl-related spectra of glasses than the usual
convolution model (1).

In the 4400–4600 cm−1 region, the shape of the
higher frequency absorption band (4527 cm−1), judg-
ing by the Sj1/Sj2 ratios (Table II column 5), is more
asymmetric than that of the lower frequency band (4451
cm−1). In the 7000–7300 cm−1 region, on the contrary,
the greater asymmetry occurs for the lower frequency
band (7106 cm−1). However, the σj1/σj2 ratios (Table II
column 6) indicate similar trends of variations in the
asymmetry of the oscillator distribution from band to
band in these regions: in each region, it is the lower
frequency band that is characterized by the more asym-
metric distribution. Therefore, it is possible that the
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Figure 4 Comparison of best fits to the spectrum of silica glass sample at wavenumbers greater than 6500 cm−1 obtained with different band contours.
(A) Best fits in the 7100 to 7300 cm−1 region obtained when simulating the envelope with different band contours. (1) is experiment, (2) is best fit
that uses two asymmetric band contours given by Equations 2 and 3 is best fit that uses three symmetric band contours given by Equation 1. (B) Best
fits in the 6550 to 7000 cm−1 region: effect of the number of symmetric band contours used for simulating the 7000–7300 cm−1 envelope. (1) is
experiment and (2) and (3) are best fits that use two and three bands, respectively, with contours given by Equation 1.

same low-frequency component of the ν(Si)O H vi-
bration participates in the formation of the 4451 and
7106 cm−1 bands and the same high-frequency com-
ponent of the ν(Si)O H vibration participates in the
formation of the 4527 and 7229 cm−1 bands. A small
Sj1/Sj2 ratio compared to the σj1/σj2 ratio found for
the 4451 cm−1 band correlates with the greatest damp-
ing coefficient γj(γj/ωj for this band being 3.0 × 10−2

compared to 8.2 × 10−3 for the 4527 cm−1 band and
∼ 3.5×10−3 for bands in the 7000–7300 cm−1 region).
Hence it follows that dissimilar variations, from band to
band, in the asymmetry of the absorption band shapes
observed for the 4400–4600 and 7000–7300 cm−1 re-
gions are due merely to differences in the effect of the
damping coefficient on a particular bandwidth.

As mentioned above, two spectral components are
quite enough for accurately simulating the 7000–7300

cm−1 envelope (Fig. 5 and Table II), which is in accord
with a similar conclusion made in [11] with respect to
the 3600–3700 cm−1 envelope covering the ν(Si)O H
fundamentals. This rejects the idea of four ν(Si)O H
components related to the O H displacements in two
kinds of bidentate groups first proposed in [2] and then
used in [3, 4]. Therefore, there are yet no physical
grounds to specify particular ν(Si)O H components
contributing to the 7000–7300 and, hence, 4400–4600
cm−1 envelopes. The participation of the ν(Si)O H vi-
bration in the combination modes responsible for the
4400–4600 cm−1 envelope was confirmed [19] by burn-
ing out this envelope with excimer laser radiation. On
the contrary, the band around 5300 cm−1 could not be
burnt out [19], which confirmed the assignment of this
band [20] to the combination mode involving the νH2O
vibration.
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T ABL E I I I Assignments of the absorption bands in the 4000 to 7400 cm−1 region of silica glass spectrum

Stone and Walrafen [3] Humbach et al. [5] Efimov et al. [9] The given research

ωj ωj ωj ωj

(cm−1) Assignment (cm−1) Assignment (cm−1) Assignment (cm−1) Assignment

Combination modes involving vibrations as follows
4100 ν′(Si)O H + δO Si O – – 4174 Certain ν(Si)O H and/or 4076 Unspecified
4450 ν′(Si)O H + νsSi O Si – – 4452 νH2O components 4451 Certain ν(Si)O H
4520 ν′′′′(Si)O H + νasSi O Si 4521 ν(Si)O H 4518 (unspecified) + some 4527 components + νsSi O Si

+ νasSi O Si matrix vibrations or νasSi O Si
– – – – 4720 4630 Unspecified
– – – – 4910 4864
– 5280 ν(Si)O H 5260 5275 νH2O + 2νsSi O Si

+ 2νsSi O Si
– – 6008 5807 Unspecified
– – – 6932

Overtone vibrations as follows
7100 2ν′′′(Si)O H 7107 Certain 2ν(Si)O H 7030 Certain 2ν(Si)O H 7106 Certain 2ν(Si)O H
7220 2ν′′(Si)O H 7178 components – components – components
7260 2ν′(Si)O H 7236 7308 7229
7380 2ν′′′(Si)O H + δSi O Si 7391 Unspecified – – 7384 Unspecified

Figure 5 Individual bands deconvoluted, from the 7000 to 7450 cm−1 region, with different band contours. (1) is experiment, (2) to (4) are the 7106,
7229, and 7384 cm−1 bands deconvoluted using the asymmetric contours given by Equations 2, and 5 to 8 are the 7087, 7166, 7231, and ∼7395 cm−1

bands deconvoluted using the symmetric contours given by Equation 1.

Table III compares our assignments for the absorp-
tion bands in the 4000 to 7400 cm−1 region of silica
glass spectrum that are based on the above considera-
tions with the band assignments available in literature.

5. Conclusions
1. A reasonably simple analytical representation for

the asymmetric band shapes in the IR absorption spectra
of glasses is developed based on a certain generaliza-
tion of the convolution model for the complex dielectric
constant. The generalization consists in the allowance
of different magnitudes of the standard deviation for an
oscillator distribution that correspond to wavenumbers
less and greater than the location of the distribution cen-
ter. The model proposed is an appropriate tool for the

computer simulation of the asymmetric band shapes in
the absorption spectra, thus being a first step to develop-
ing a general model for the complex dielectric constant
of glasses that would be applicable to a broad variety
of possible IR band contours.

2. A version of the dispersion analysis of the IR
absorption spectra of glasses developed based on the
above generalized convolution model allows for sim-
ulating the hydroxyl-related absorption maxima in the
4400–4600 and 7000–7300 cm−1 regions of silica glass
spectrum with no systematic errors throughout the con-
tours of the maxima, thus providing the appreciably
better quality of the fit than that obtainable with the
available versions of the dispersion analysis based on
the usual convolution model assuming the symmetric
band shapes.
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3. The above generalized convolution model for the
complex dielectric constant requires, for adequately
simulating the hydroxyl-related absorption maximum
in the 7000–7300 cm−1 region of silica glass spectrum,
a smaller number of spectral components than is the
case for the usual convolution model or, the more so,
for standard deconvolution methods. Therefore, the dis-
persion analysis using this model is preferable from the
viewpoint of avoiding the insufficiently justified incor-
poration of additional bands.
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